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Abstract. We propose a simple analytical expression for the inter-layer local-field correction
(LFC) for weakly coupled two-layer systems and develop a sum-rule version of the self-consistent
approach of Singwi, Tosi, Land, and Sjölander. On the basis of the approximate approach, the
inter-layer LFC is investigated for electron–electron and electron–hole layers with different
carrier densities and layer spacings. Using this parametrized inter-layer LFC, we calculated the
transresistance in the electron–electron and electron–hole layers. The theoretical results are in
good agreement with the available experimental data.

1. Introduction

Recently, there has been considerable interest in Coulomb drag between spatially separated
electron–electron [1] and electron–hole [2] systems. However, the theoretical calculations
within the random-phase approximation (RPA) were not able to give a satisfactory
explanation for the experimental results on the momentum transfer due to the Coulomb
drag effect [2–4]. This failure stimulated investigations beyond the RPA.Świerkowski,
Szymánski, and Gortel [3] modified the bare Coulomb interaction with short-range
correlations and obtained an excellent agreement between the experimental transresistance
data and the theory for the coupled electron–hole layer. In the case of electron–electron
layers, including the Hubbard factor made the calculated temperature-dependent trans-
resistance fit the experimental data better [4].

It is well known that the RPA is useful for describing properties of interacting electron
gases in the high-density limit, but it does not include corrections due to the effects of
exchange and correlation to the effective potentials associated with charge fluctuations in
the system. Historically, numerous attempts have been made to improve on the RPA and
to include the corrections in a simple physically motivated way. A self-consistent approach
to the local-field correction (LFC) and the static structure factor (SSF) was proposed for
the electron gas and its generation for two-component systems by Singwi, Tosi, Land, and
Sjölander [5] (STLS) in a series of papers three decades ago. They suggested that the
short-range correlations responsible for the LFC can be taken into account in the dielectric
function in a more satisfactory and self-consistent manner by making the dielectric function
a functional of the Fourier transform of the pair-distribution function. Later, the generalized
STLS approach was used to calculate the ground-state energy, the partial-pair-correlation
functions, and the superconducting transition temperature of the electron–hole liquid in
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semiconductors, including multiple electron–hole scattering [6, 7]. Recently, the generalized
STLS approximation has been further developed so as to be suitable to apply to double-layer
2D systems, and for investigating the static and dynamic properties of coupled electron–
electron and electron–hole layers [8–11]. Zhang [8] carried out a full STLS calculation
to determine both the intra-layer and inter-layer local fields self-consistently, and found an
anomalous behaviour of the static structural factors and a softened long-wavelength acoustic
plasma mode in comparison with those under the RPA. Zheng and MacDonald [9] used the
STLS approximation to calculate the intra-layer and inter-layer pair-correlation functions,
the ground-state energies, and the electron momentum distribution. In these calculations,
both the intra-layer corrections and the inter-layer corrections were considered in a self-
consistent manner, with the same level of approximation. Szymański, Świerkowski, and
Neilson (ŚSN) [10] investigated the static and dynamic properties of double 2D systems
in detail by simply calculating the STLS inter-layer corrections; they assumed that the
intra-layer correction in the system is analogous to the corrections for a single layer, and
neglected any feedback of inter-layer corrections to intra-layer corrections for the sake of
numerical simplicity. Subsequently, Liu and SŚN [11] pointed out that this simplification
would be reasonable if correlations between the layers are weak at densities that are not
extremely low. This is exactly the case that the drag measurements are concerned with for
coupled two-layer systems.

Unfortunately, complete simulations for the inter-layer corrections are cumbersome in
the theoretical computation of Coulomb drag between two coupled layers. Recently, an
analytical expression for the LFC of three- and two-dimensional electron gases has been
presented within a sum-rule version of the STLS approach given by Gold and Calmels [12].
They emphasized that this simplified STLS approach is in good agreement with the full STLS
approach and with Monte Carlo simulations for the ground-state energies. In investigating
the electron–hole liquid, Canright and Vignale [7] assumed a simple form of the LFC with
two parameters which satisfies the sum rules in the small-q limit and reduces to the STLS
limit for large q. On the basis of the effective electron–electron interaction, they studied
the possibility of superconductivity in the electron–hole liquid and the superconductivity
transition temperature.

In this paper, we propose an analytical expression within a sum-rule version of the
STLS approach to describe the inter-layer LFC for the weakly coupled two-layer systems.
First, the analytical expression for the inter-layer LFC is described and the two-parameter-
sum-rule approach is discussed in section 2. Then we apply this approximate approach to
calculate the inter-layer LFC factors and study the effect of inter-layer correlations on the
Coulomb drag of weakly coupled electron–electron and electron–hole layers, respectively.
For the experimentally investigated electron–hole system, excellent agreement between the
calculated transresistances and the experimental data is obtained; this is shown in section 3.
Finally, a short conclusion will be given in section 4.

2. The model and theory

We consider two spatially separated coupled quantum wells with the same well widthw.
The centre-to-centre distance of the two quantum wells isd. Each layer has only one type
of charge carrier (electrons or holes); these are free to move in thex–y plane parallel to
the layer and are confined in thez-direction. Assuming that the confinement is provided by
an infinitely high potential and only the lowest subband in each quantum well is occupied,
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the wave function of thelth layer can be written as

ψlk(r, z) = 1√
A

eik·rζl(z) (l = 1, 2) (1)

with the energyεlk = h̄2k2/2ml , whereA is the area of the sample, andζl(z) is the envelope
function. k = (kx, ky) andr = (x, y) represent the 2D wave vector and the coordinate of
the carrier, respectively. The bare intra-layer and inter-layer Coulomb interactions take the
forms

Vll′(q) = ηll′ 2πe
2

κq
Hll′(q)

Hll′(q) =
∫

dz
∫

dz′ e−q|z−z
′||ζl(z)|2|ζl′(z′)|2

(2)

whereηll′ = 1 for electron–electron layers and(−1)|l−l
′| for electron–hole layers.κ is the

dielectric constant of the material. Following the STLS approach [5], the charge fluctuation
induced by the effect of the exchange and correlation can be approximately described by a
static and equilibrium charge pair-distribution functiongll′(r), whose Fourier transform is
the static structure factorSll′(q):

gll′(r) = 1+ 1√
nlnl′

∫
dq

(2π)2
eiq·r[Sll′(q)− δll′ ]. (3)

δll′ is the Kronecker delta andnl is the equilibrium density in thelth layer. The density–
density correlation function of double-layer 2D systems can be derived as [8–10]

5ll(q, ω) = [1−Gll(q)]Vll(q)

1(q, ω)
50
ll(q, ω)

5ll′(q, ω) = − [1−Gll′(q)]Vll′(q)

1(q, ω)
50
ll(q, ω)5

0
l′l′(q, ω) (l 6= l′)

(4)

where

1(q, ω) = {1− [1−Gll(q)]Vll(q)5
0
ll(q, ω)

} {
1− [1−Gl′l′(q)]Vl′l′(q)5

0
l′l′(q, ω)

}
− [1−Gll′(q)]

2[Vll′(q)]
250

ll(q, ω)5
0
l′l′(q, ω). (5)

In these equations,50
ll(q, ω) is the density–density correlation function of the single isolated

layer l in the absence of inter-particle Coulomb interaction, and the intra- and inter-layer
LFC factorsGll(q) andGll′(q) modify the interaction between particles in layersl and
l′, respectively. The static structure factorSll′(q) is related to the imaginary part of the
density–density correlation function, through the fluctuation-dissipation theorem:

Sll′(q) = − 1√
nlnl′

h̄

π

∫ ∞
0

Im5ll′(q, ω) dω. (6)

According to the STLSansatz, the LFC factors can be obtained from the static structure
factors [8–10]:

Gll′(q) = − 1√
nlnl′

∫
dk

(2π)2
q · k
q2

Vll′(k)

Vll′(q)
[Sll′(|q − k|)− δll′ ]. (7)

Equations (4), (6), and (7) form a closed set of equations, which can be solved self-
consistently to obtain the intra- and inter-layer LFC factorsGll′(q).

As discussed in the above section, we can introduce two approximate procedures to
simplify the calculation of the inter-layer LFC factors for the weakly coupled two-layer
systems. First, we can assume that the coupling between the two layers is weak enough that
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Figure 1. The calculated inter-layer LFC factorsG12(q) are plotted as functions ofq for the
electron–electron (a) and electron–hole (b) two-layer systems. Each layer has the same carrier
density, 0.5× 1011 cm−2. In (a), the spacings between the two electron layers ared = 20 nm
(solid line), d = 25 nm (dashed line), andd = 30 nm (chain line), respectively. In (b),kF,e is
the Fermi wave vector of the electron layer at absolute zero temperature. The layer spacings
are 25 (solid line), 30 (dashed line), and 35 nm (chain line).

the inter-layer correlations do not affect the intra-layer correlations. Then any feedback of
inter-layer correlations into intra-layer correlations can be neglected, and a fixed intra-layer
LFC factorGll(q) can be used as an input to solve equations (4), (6), and (7) self-consistently
for the inter-layer LFCGll′(q) (l 6= l′). In our calculations, the well-determined LFC factor
Gll(q) for a single layer is taken as the fixed input. The second procedure—the central part
of the paper—is that of choosing an approximative form to analytically describe the inter-
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layer LFC factorGll′(q) for the weakly coupled two-layer systems. There are two limits
for the LFC factor. The two-component generalization of the well-known compressibility
sum rule results in the small-q limit of the inter-layer LFC [6, 7]. On the other hand, within
the STLS theory, the LFC must satisfy the following relationship:

lim
q→∞Gll′(q) = 1− gll′(0). (8)

The simplest form that can smoothly interpolate between the small-q and large-q limits is
the two-parameter formula

G12(q) = aq√
q2+ b2

. (9)

Using the analytical expression for the inter-layer LFC, we can calculate the density–density
correlation functions5ll′(q, ω) and the static structure factorsSll′(q) through equations (4)
and (6), respectively. The two unknown parameters can be determined by the requirement
of having the following two limits. For the large-q limit, according to equation (8), the
following formula can be derived by using the definition of the pair-distribution function
equation (3):

lim
q→∞G12(q) = a = − 1√

n1n2

1

2π

∫ ∞
0
kS12(k) dk. (10)

The small-q limit formula that we present here originates from the STLS definition of the
LFC factors, equation (7), which is different from the expression of Canright and Vignale [7]:

lim
q→0

G12(q) = a

|b| = −
1√
n1n2

1

2π

∫ ∞
0

e−kdS12(k) dk. (11)

Self-consistently solving the set of equations (10) and (11), we can obtain the values of the
two parametersa andb.

3. Application to the weakly coupled two-layer systems

In the section, we apply the method developed above to weakly coupled electron–electron
and electron–hole GaAs–AlxGa1−xAs–GaAs heterostructure layers. The material parameters
are typical values for GaAs. The effective masses of the electron and hole (in terms of
the free-electron mass) are 0.067 and 0.45, respectively. The static dielectric constant is
κ = 12.9. First, we investigate the inter-layer correction for the two layers.

In figure 1(a), the inter-layer LFC factorsG12(q) are plotted as functions ofq for two
electron layers each of densityN = 0.5× 1011 cm−2 (thick curves) with three different
layer spacingsd = 20 (solid line), 25 (dashed line), and 30 nm (chain line). Obviously,
the figure shows that as the layers are brought closer together, the correlation between the
layers becomes stronger and the inter-layer LFC factor increases. The similar behaviour
for the weakly coupled electron–hole layer is exhibited in figure 1(b), where the electron
and hole layers have the same density, 0.5× 1011 cm−2, and the layer spacings are 25,
30, and 35 nm, respectively. These results are in agreement with the earlier prediction that
increasing the layer spacing means decoupling the correlation between two layers. It is
clear that if one layer is at an infinite distance from the other, they are independent of each
other, and the inter-layer LFC factor tends to zero. This tendency is clearly demonstrated in
figure 2, where we show the parametersa(d)/|a(d0)| andb(d)/b(d0) (d0 = 20 nm for the
electron–electron layer andd0 = 25 nm for the electron–hole layer) versus the layer spacing
d for the two layers each of densitiesN = 0.5, 1.0, and 2.0× 1011 cm−2. Increasing the
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Figure 2. The normalized parametersa and b in the approximate expression (9) versus the
spacing between the two layers are depicted for electron–electron (a) and electron–hole (b)
layers, each at densities of 0.5× 1011 cm−2 (solid lines), 1× 1011 cm−2 (dashed lines), and
2× 1011 cm−2 (chain lines).

layer spacingd to infinity leads toa(d)→ 0, i.e.,G12(q)→ 0. It is well known that, for
high enough densities, the effects of exchange and correlation become minor. Therefore,
increasing the density of the two electron layers weakens the correlation between the layers
as shown in figure 1(a) by the thin curves for the higher densityN = 1×1011 cm−2. On the
other hand, we can easily see that the effects of inter-layer exchange and correlation play
opposite roles in the inter-layer LFC of the electron–electron and electron–hole layers. The
inter-layer LFC factor of the electron–electron layer is positive and the effective inter-layer
repulsive interaction is diminished. Nevertheless, in the electron–hole layer the attractive
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Figure 3. The temperature dependence of the transresistance for the electron–electron (a) and
electron–hole (b) systems. Solid lines represent the theoretical results with both intra- and
inter-layer corrections included, dashed lines the results obtained taking into consideration the
intra-layer correction only, and chain lines the results without corrections (RPA). The parameters
used in the calculations are: centre-to-centre distance between the layers:d = 25 nm; carrier
density: 0.5× 1011 cm−2.

inter-layer interaction is enhanced due to the negative LFC. The differences between the
electron–electron and electron–hole systems can result in opposite effects of the inter-layer
correlation on the Coulomb drag.

According to STLS, the effects of exchange and correlation can be taken into account
by simply replacing the bare Coulomb interactions with the effective potentials modified by
the LFC. In this spirit, considering the effect of short-range correlation, the transresistance
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derived from the Kubo linear-response formalism can be rewritten as [1–3, 13]

RT = − βh̄2

2N1N2e2

∑
q

q2
∫ ∞

0

dω

2π

∣∣V ′12(q)
∣∣2

|1(q, ω)|2
Im50

11(q, ω) Im50
22(q, ω)

cosh(βω)− 1
(12)

whereβ = 1/kBT andV ′12(q) is the effective inter-layer Coulomb interaction modified by
the inter-layer LFCG12(q):

V ′12(q) = [1−G12(q)]V12(q). (13)

Using equation (12), we calculate the temperature-dependent transresistance for both types
of system having the same geometrical parametersd = 25 nm and the same carrier density
N = 0.5× 1011 cm−2 in both layers. The solid lines in figures 3(a) and 3(b) represent
the calculated transresistance with intra- and inter-layer corrections included for electron–
electron and electron–hole layers, respectively. For comparison, those results obtained
taking into consideration only the intra-layer corrections (G12(q) = 0) (dashed lines) and
without any correlations (RPA) (chain lines) are also plotted in figure 3. It is apparent that the
intra-layer correlations play a fundamental role in the Coulomb drag for the weakly coupled
two-layer systems. The intra-layer correlations can substantially enhance the transresistance
in both types of system, and the enhancement is considerably stronger in the electron–hole
layer than in the electron–electron layer. However, we can easily establish that the inter-
layer correlations in different types of system play different roles in the transresistance. The
negative inter-layer LFC factor can further enhance the Coulomb drag in the electron–hole
layer, while the transresistance of the electron–electron layer is decreased due to the positive
inter-layer LFC. In addition, the effect of inter-layer correlations is more pronounced in the
electron–hole system than in the electron–electron system.

In figure 4, we evaluate the temperature-dependent transresistances for the exp-
erimentally measured electron–hole systems [2]. The predicted transresistances (solid lines)
with intra- and inter-layer corrections included, which are determined by means of the
sum-rule approach within the STLS technique developed here, match the experimental data
(filled circles) quite well. In contrast, the RPA results, which are plotted as dashed curves,
fail to match the behaviour of the transresistance.

4. Conclusion

In the present paper, we provide a sum-rule approach within the STLS approach for
calculating the inter-layer correction for weakly coupled two-layer systems. There are
two main approximations used in the paper: the first concerns the weak coupling between
the two layers, and the second concerns the structure of the inter-layer LFC. Because of
the weak coupling, we can assume that the intra-layer corrections for each layer are not
influenced by the correlations between the two layers, and the intra-layer correction of an
isolated single layer is taken as the fixed input for calculating the inter-layer corrections.
Considering the fact that in the large-q limit the inter-layer LFC can be related, according to
the theory of STLS, to the pair-correlation function at zero separation, while in the small-q

limit the LFC must satisfy its definition within the STLS approach, we introduce a simple
formula with two parameters, reminiscent of the Hubbard approximation, to interpolate
between the two limits.

Using the model, the inter-layer LFC factors are evaluated for both types of system with
several different carrier densities and layer spacings. We find that the effective Coulomb
interaction between the two layers is diminished for the electron–electron layer and enhanced
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Figure 4. The temperature dependence of the transresistance for the electron–hole system with
layer spacingd = 30 nm. The density of the hole layer is fixed at 0.5× 1011 cm−2, and the
densities of the electron layer are 0.5× 1011 cm−2 (a) and 2× 1011 cm−2 (b). The solid lines
represent the results calculated with both intra- and inter-layer corrections included. The RPA
results and experimental data are plotted as dashed curves and filled circles, respectively.

for the electron–hole layer, due to the inter-layer corrections. Decreasing the density or
increasing the layer spacing can weaken the correlation between the two layers.

With the help of the approximative inter-layer LFC factors, we calculate the effect of
inter-layer corrections on the transresistance in electron–electron and electron–hole layers.
Our numerical results show that the inter-layer corrections influence the Coulomb drag in
electron–electron layers in a different way to in the electron–hole layers. Good agreement
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between the calculated temperature-dependent transresistances and the experimental data is
obtained for the electron–hole systems.
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